
Reactive	Micro	Services	with	Eclipse	Vert.x	
for	 
Polyglot	developers	 
Java,	JavaScript,	Groovy,	Ruby,	Ceylon,	Scala	and	Kotlin	 
Prerequisite:	 

1. Developer	may	have	knowledge	on	Java	and	Java	8	functional	Programming	
concepts	and	implementation.		

2. Developer	must	have	knowledge	on	JEE	Technology		
3. Developer	must	have	strong	working	knowledge	on	Rest	full	Web	Services.		
4. Developer	must	have	idea	on	build	systems	such	as	maven	and	Gradle		
5. Developer	must	have	Knowledge	on	Docker	basics,	Kubernetes,	Red	hat	Open	

Shift		

Duration	5	days	
Day	01	 

Vertx	Introduction	 

What	is	Vertx	Vert.x	Project	Vertx	Application	 

Alternatives	to	Vert.x	 

Java	nio	
Netty	and	Apache	Mina	Spring	WebFlux	 

Preparing	Vertx	Application	 

Setup	Vertx	 

 

Introduction	to	Build	Systems	
Maven	 

Day	02	 

Vertx	Projects	Overview	 

How	Vertx	Projects	are	working	Vertx	Core	Project	
Vertx	Extension	Projects	Promises	 

Futures	 



Vertx	Core	Project	 

Vertx	Core	Project	Provides	low	level	Services	
Vertx	Core	for	building	basic	Non-Blocking	Applications	Non-Blocking	,Async	Core	Apis	
The	Event	bus	
Shared	data	-	local	maps	and	clustered	distributed	maps	Periodic	and	delayed	actions	
Deploying	and	undeploying	Verticles	
File	system	access	 

Vertx	Core	API-	io.vertx.core	 

io.vertx.core.Vertx	 

Creating	Vertx	Object-	Factory	Apis	 

vertx(),	vertx(io.vertx.core.VertxOptions)	 

clusteredVertx	(io.vertx.core.VertxOptions,	Handler)	 

Vertx	Core	Principles	 

Are	you	fluent?.	
Don’t	call	us,	we’ll	call	you.	
Don’t	block	me!	
Reactor	and	Multi-Reactor	
The	Golden	Rule	-	Don’t	Block	the	Event	Loop	Running	blocking	code	 



 

Async	coordination	 

Verticles	 

Verticles	
Writing	Verticles	
Asynchronous	Verticle	start	and	stop	Verticle	Types	 

o	Standard	Verticles	
o	Worker	Verticles	
o	Multi-threaded	worker	verticles	 

Deploying	verticles	programmatically	
Rules	for	mapping	a	verticle	name	to	a	verticle	factory	Waiting	for	deployment	to	
complete	
Undeploying	verticle	deployments	
Specifying	number	of	verticle	instances	



Passing	configuration	to	a	verticle	
High	Availability	
Causing	Vert.x	to	exit	 

Day	03	 

Micro	Services	implementation	using	Vertx	 

Microservices	Architecture	Overview	
Patterns	
Why	Vertx	is	choice	for	Microservices	
Reactive	vs	Future	style	Microservice	Implementations	 

Non-Blocking,	Async	Network	Programming	 

Writing	HTTP	servers	and	clients	 

Creating	an	HTTP	Server	Configuring	an	HTTP	server	Configuring	an	HTTP/2	server	
Logging	network	server	activity	
Start	the	Server	Listening	
Getting	notified	of	incoming	requests	Handling	requests	 

 

Sending	back	responses	
Setting	status	code	and	message	Closing	the	underlying	connection	 

Vert.x	Modules-Web	 

Vert.x	Web	Sub	Modules	 

Web	Core	
Web	Client	
Routing	(based	on	method,	path,	etc)	
Regular	expression	pattern	matching	for	paths	
	
Content	negotiation	
Request	body	handling	
Body	size	limits	
Multipart	file	uploads	
Sub	routers	
Error	page	handler	
Favicon	handling	
Template	support	for	server	side	rendering,	including	support	for	the	following	
template	engines	out	of	the	box:	
	
Response	time	handler	
Static	file	serving,	including	caching	logic	and	directory	listing.	 



The	Event	Bus	-Service	Communications	Pattern	through	Event	Sourcing	Pattern	 

The	Theory	
Addressing	
Handlers	
Publish	/	subscribe	messaging	
Point-to-point	and	Request-Response	messaging	Types	of	messages	 

The	Event	Bus	API	Registering	Handlers	Un-registering	Handlers	Publishing	messages	
Sending	messages	 

 

Event	bus	communication	over	distributed	systems	 

How	to	send	messages	over	tcp	bridge	Sending	messages	to	browsers	via	sockjs	 

Buffers	 

Creating	buffers	
Creating	buffers	
Appending	to	a	Buffer	Random	access	buffer	writes	Reading	from	a	Buffer	 

Unit	testing	 

Introduction	
Writing	a	test	suite	Asserting	
Asynchronous	testing	Asynchronous	assertions	Repeating	test	
Sharing	objects	
Running	
Reporting	
Vertx	integration	
Junit	integration	
Java	language	integration	 



Day	04	&	05	 

Micro	services	Modules	 

Vert.x	offers	various	component	to	build	micro	service-based	applications.	 

Vert.x	Service	Discovery	 

This	component	lets	you	publish,	lookup	and	bind	to	any	type	of	services.	 

Using	the	service	discovery	Overall	concepts	 

 

Creating	a	service	discovery	instance	Publishing	services	
Withdrawing	services	
Looking	for	services	 

Retrieving	a	service	reference	
Types	of	services	
Listening	for	service	arrivals	and	departures	
Listening	for	service	usage	
Service	discovery	bridges	
Additional	bridges	
Additional	backends	
This	component	provides	an	infrastructure	to	publish	and	discover	various	resources,	
such	as	service	proxies,	HTTP	endpoints,	data	 

Vert.x	Circuit	Breaker	 

Vert.x	Circuit	Breaker	
Using	the	vert.x	circuit	breaker	
Using	the	circuit	breaker	
Retries	
Callbacks	
Event	bus	notification	
The	half-open	state	
Reported	exceptions	
Pushing	circuit	breaker	metrics	to	the	Hystrix	Dashboard	Using	Netflix	Hystrix	 

Vert.x	Config	 

Concepts	
Using	the	Config	Retriever	
Overloading	rules	
Using	the	retrieve	configuration	Available	configuration	stores	
Listening	for	configuration	changes	Retrieving	the	last	retrieved	configuration	Reading	
configuration	as	a	stream	Processing	the	configuration	
Retrieving	the	configuration	as	a	Future	Extending	the	Config	Retriever	Additional	



formats	
Additional	stores	 

 

Reactive	Programming	using	Rxjava	&&	Reactive	Microservice	implementation	 

Reactive	Programming	using	RxJava	Observables	
Streams	
Operators	 

Hot	and	Cold	Streams	
Backpressure	
Vertx	with	Reactive	apis	
Micro	services	implementations	using	Rxjava.	 

 
 


