Data-science - R

Duration: 3 Days

INTRODUCTION

- Data science & its importance
- Key Elements of Data Science
- Introduction to ML
- Artificial Intelligence & Machine Learning Introduction
- Who uses AI?
- Al for Banking & Finance, Manufacturing, Healthcare, Retail and Supply Chain
- Supervised & Unsupervised Learning
- Regression & Classification Problems
- What makes a Machine Learning Expert?
- What to learn to become a Machine Learning Developer?
- Overview of Machine Learning Algorithms

R

- R basics (If-Else, Control Structures, Loops, Functions, Data Types)
- Data structures (Vector, Matrix, Dataframe, Lists)
- Indexing, Data Processing
- Mathematical computing basics
- Getting Started with Dplyr and tidyr
- Data Acquisition (Import & Export)
- Selection and Filtering
- Combining and Merging Data Frames

STATISTICS and EDA

- Introduction to Visualization
- Visualization Importance
- Working with R visualization libraries like ggplot2
- Creating Line Plots, Bar Charts, Pie Charts, Histograms, Scatter Plots
- Understanding Box plots
- Understanding Probability Distributions, Violin Plots
- Correlations and Heatmaps
- Summary Statistics
- Central Tendency measures
- Measures of dispersion
- Normal Distributions and z-score
- Missing Value Imputation
- Outlier Detection and handling
- Advanced EDA techniques

- Machine Learning Algorithms Generic Concepts
 - \circ Sample and Population
 - Bias-Variance Trade off
 - Overfitting and Underfitting
 - o Cross Validation
 - o Regularization techniques
 - o Hyperparameter tuning & grid search optimization
- Linear Regression
 - o Regression Problem Analysis
 - $\circ \quad \text{Mathematical modelling of Regression Model}$
 - o Gradient Descent Algorithm
 - o Use cases
 - o Regression Table
 - $\circ \quad \text{Model Specification} \\$
 - o L1 & L2 Regularization
 - o Building simple Univariate Linear Regression Model
 - o Multivariate Regression Mode
 - R2, p-value, RMSE and residual plots
- Logistic Regression
 - o Assumptions
 - $\circ \quad \text{Sigmoid function} \quad$
 - o ROC Curve
 - o Model Specification
 - o Confusion Matrix
 - o Accuracy, Recall, Precision and F1 Score
- Decision Trees
 - Forming a Decision Tree
 - o Components of Decision Tree
 - o Mathematics of Decision Tree
 - o Decision Tree Evaluation
- KNN
 - \circ Components of Decision Tree
 - $\circ \quad \text{Mathematics of Decision Tree}$
 - $\circ \quad \text{Metrics for evaluation} \quad$
- Support Vector Machine
 - Concept and Working Principle
 - Mathematical Modelling
 - o Optimization Function Formation
 - The Kernel Method and Nonlinear Hyperplanes
 - Ensemble Models
 - Bagging
 - o Boosting
 - \circ Stacking
 - Voting Classifier
 - o Random Forest
- Unsupervised Machine Learning algorithms
 - Clustering with K-meansClustering
 - Clustering with Hierarchical Clustering
 - Advanced clustering techniques and use cases
 - o Dimensionality Reduction
 - o PCA
- Text Mining and NLP
 - o Sentiment Analysis

- Topic Summarization
- o Topic Modelling
- \circ $\,$ Bag of Words and Tf-IDF $\,$
- Cosine Similarity of terms, documents concepts
- Text Cleaning and Preprocessing using Regex
- Tokenization, Stemming and Lemmatization

CASE STUDY AND PROJECTS

Students would be given challenging real-life cases to solve – just to augment their learning skills